天秤女喜欢什么样的男生| 乳液是什么| 拉稀拉水吃什么药管用| 72年鼠是什么命| qq黄钻有什么用| 小孩割包皮挂什么科| 世界上最坚硬的东西是什么| hpv病毒是什么意思| 什么鱼蛋白质含量高| 姓贾的男孩取什么名字好| 红指什么生肖| 女人吃桃子有什么好处| 小巧玲珑是什么意思| 右手发抖是什么原因| 睾丸痛吃什么药| 公安局属于什么机关| 小孩为什么经常流鼻血| 皮肤白斑是什么原因| 什么病不能吃西洋参| 内分泌科看什么| 鸡茸是什么东西| colorful是什么牌子| 喜欢喝冰水是什么原因| 3岁宝宝流鼻血是什么原因| 痔疮是什么原因引起| 口腔溃疡长什么样| 圣母娘娘是什么神| 梦见蛇和老鼠是什么意思| 意见是什么意思| 打太极拳有什么好处| 什么的小花| 梦见大蟒蛇是什么预兆| 吃什么促进腺样体萎缩| 孕激素高会有什么影响| 宝宝不爱喝水有什么好的办法吗| puma是什么品牌| 疥疮是什么病| 何首乌长什么样| 三原色是什么| 皮肤爱出油是什么原因| 水由什么构成| 遇难呈祥是什么生肖| 孤品是什么意思| 花枝鼠吃什么| 77年什么命| 什么是形而上学| 阿莫西林主要治疗什么| 什么人适合学玄学| 志司是什么意思| 敏字五行属什么| 女生什么时候最容易怀孕| 颉在姓氏里念什么| 黄体破裂是什么意思| 有什么花| 盐酸二甲双胍缓释片什么时候吃| 多吃什么可以长头发| 五月是什么星座| 肝脏低密度影是什么意思| 红豆有什么功效和作用| 草是什么植物| 可可粉是什么东西| 姥爷是什么意思| 什么空如什么| 高尿酸血症是什么意思| 妇科ph值是什么意思| 萧字五行属什么| 急性结肠炎什么症状| 北京户口有什么好处| 临盆是什么意思| 肝郁气滞血瘀吃什么药| 为什么长鸡眼| 9月24号什么星座| 绕行是什么意思| 胃疼可以吃什么药| 为什么会得前列腺炎| 不经意间是什么意思| 肠道蠕动慢吃什么药| 985学校是什么意思| 粘纤是什么面料优缺点| 生气什么什么| 尿失禁是什么意思| 肉字五行属什么| 气场是什么意思| 木乐读什么| 香蕉皮擦脸有什么作用与功效| 诺如病毒吃什么药最有效| 清浅是什么意思| 亚甲炎吃什么药效果好| 班别是什么意思| 10月24号是什么星座| 猪和什么生肖最配| 努尔哈赤和皇太极是什么关系| 婴儿老是放屁是什么原因| 鹅口疮是什么引起的| 下午5点多是什么时辰| 樟脑丸是干什么的| p是什么医学| ne是什么意思| 吃什么蔬菜可以降血脂| 维生素c什么时候吃| 避孕药有什么副作用| 清热解毒是什么意思| 小葫芦项链是什么牌子| 什么人不能吃鹅蛋| 吐血是什么原因引起的| 白居易有什么之称| 猪八戒有什么优点| 南非用什么货币| 智齿是什么牙| 芝士可以做什么美食| 5月2号是什么星座| 维生素h是什么| 风评是什么意思| 所剩无几是什么意思| 中医经方是什么意思| 粘是什么意思| 射精太快吃什么药| 美国今天是什么节日| 血儿茶酚胺是查什么的| 腊肠炒什么菜好吃| 抗宫炎软胶囊主要治什么| 达泊西汀是什么药| 什么叫情商高| 药学是干什么的| 肚子痛去药店买什么药| 纾字五行属什么| 什么叫真丝| miracle是什么意思| 风采依旧是什么意思| 子宫内膜薄有什么危害| 打点滴是什么意思| 豆腐不能和什么一起吃| 眼睛散光是什么意思| 医疗保险是什么| 冠脉造影是什么意思| 头发为什么长不长| 子宫腺肌症是什么原因引起的| 性冷淡是什么| 燕窝适合什么人吃| 更年期失眠吃什么药| 猴跟什么生肖相冲| 为什么正骨后几天越来越疼| 阿奇霉素是什么药| 大什么大什么| 什么叫脑白质病变| 乙肝阻断针什么时候打| 东莞有什么区| 长沙有什么好玩的| 俄罗斯的货币叫什么| 大学院长是什么级别| 玉米有什么营养| 狮子座和什么座最配对| 最机灵的动物是什么生肖| 今天穿什么衣服合适| 光盘是什么| 高丽参是什么参| 多种维生素什么牌子的效果最好| 腰肌劳损需要注意什么| 月经每次都推迟是什么原因| 超管是什么| cima是什么证书| 吃什么药可以延长性功能| 花斑癣用什么药膏好| 孕妇腹泻可以吃什么药| 孕妇吃榴莲对胎儿有什么好处| 日照是什么海| ad是什么缩写| paba是什么药| 给老师送什么礼物好| 世界之大无奇不有是什么意思| 黄皮肤适合什么颜色的衣服| 牙龈肿是什么原因引起的| siri是什么意思| 苹果有什么功效和营养| 雌堕什么意思| 词又被称为什么| 面首是什么意思| 尿血吃什么药最好| 喝水牙疼是什么原因| 安全生产职责是什么| 胸痛什么原因| 梦见摘黄瓜是什么意思| 多种维生素什么时候吃效果最好| 劳宫穴在什么位置| 为什么胸会痛| 渡人是什么意思| 寒热错杂吃什么中成药| 煎饼果子的果子是什么| 麦冬不能和什么一起吃| 慰安妇什么意思| 什么人不能喝桑黄| 落枕是什么原因| 血小板低看什么科| 羊水穿刺是检查什么的| 久经沙场是什么意思| 孤枕难眠什么意思| 鱼能吃什么| 什么是管制| fan什么意思| 每天吃黄瓜有什么好处| 思字属于五行属什么| 欢乐海岸有什么好玩的| 59岁属什么生肖| 喉咙不舒服是什么原因| 喝酒后吃头孢有什么反应| 脊髓炎吃什么药| 萨瓦迪卡是什么意思| 黑茶是什么茶| 晚上难入睡是什么原因| 只出不进什么意思| 喝酒后胃不舒服吃什么药| 怀孕期间不能吃什么| 男人小便刺痛吃什么药| 82属什么生肖| 南极被称为什么| 性生活是什么| 胆囊炎吃什么食物好| 临期是什么意思| 浛是什么意思| 脉络膜裂囊肿是什么病| 乳腺增生不能吃什么| uv是什么材质| 孕妇感染弓形虫有什么症状| 留意是什么意思| 酸奶能做什么美食| 丞相和宰相有什么区别| 酷儿是什么意思| 梦见自己家盖房子是什么预兆| 纤维硬结灶是什么意思| 调侃什么意思| 守宫吃什么| 血糖高吃什么降血糖| 月经期间适合吃什么水果| 百香果配什么好喝| 胆囊结石有什么影响| 什么是能量| 毛的部首是什么| 鸭子为什么会游泳| 行政工作主要负责什么| 吃力不讨好是什么意思| 鼻子和嘴巴连接的地方叫什么| 辣椒炒肉用什么肉| 灵魂摆渡人是什么意思| 86年属什么生肖| 小孩耳朵痛什么原因| 吸顶灯什么牌子的好| 血小板低吃什么食物补得快| 沐什么意思| 水痘不能吃什么食物| 世界上最难写的字是什么字| 医学ns是什么意思| 日龙包什么意思| 86年属什么| 老流鼻血是什么原因引起的| 保胎是什么意思| 东莞市委书记什么级别| 62年的虎是什么命| 子宫内膜厚是什么原因引起的| 吃炒黑豆有什么好处和坏处| 石斛与什么搭配最好| 红枣泡水喝有什么好处| 脑供血不足用什么药好| 霉菌性阴炎用什么药好得快| 西沙必利片治什么病| 百度

国门口岸的边检站“女子科”是怎样一种所在?

百度 潘建伟介绍,量子卓越中心牵头承担了中科院战略性先导科技专项(A类)量子科学实验卫星、中科院战略性先导科技专项(B类)量子系统的相干控制、发改委量子保密通信京沪干线技术验证及应用示范项目等多项国家重大科技任务,均在顺利实施。

Accuracy and precision are measures of observational error; accuracy is how close a given set of measurements are to their true value and precision is how close the measurements are to each other.

Accuracy is the proximity of measurement results to the accepted value; precision is the degree to which repeated (or reproducible) measurements under unchanged conditions show the same results.

The International Organization for Standardization (ISO) defines a related measure:[1] trueness, "the closeness of agreement between the arithmetic mean of a large number of test results and the true or accepted reference value."

According to ISO 5725-1, accuracy consists of trueness (proximity of the mean of measurement results to the true value) and precision (repeatability or reproducibility of the measurement).

While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions:

  1. More commonly, a description of systematic errors (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision", so a particular set of data can be said to be accurate, precise, both, or neither. This concept corresponds to ISO's trueness.
  2. A combination of both precision and trueness, accounting for the two types of observational error (random and systematic), so that high accuracy requires both high precision and high trueness. This usage corresponds to ISO's definition of accuracy (trueness and precision).[2]

Common technical definition

edit

In simpler terms, given a statistical sample or set of data points from repeated measurements of the same quantity, the sample or set can be said to be accurate if their average is close to the true value of the quantity being measured, while the set can be said to be precise if their standard deviation is relatively small.

In the fields of science and engineering, the accuracy of a measurement system is the degree of closeness of measurements of a quantity to that quantity's true value.[3] The precision of a measurement system, related to reproducibility and repeatability, is the degree to which repeated measurements under unchanged conditions show the same results.[3][4] Although the two words precision and accuracy can be synonymous in colloquial use, they are deliberately contrasted in the context of the scientific method.

The field of statistics, where the interpretation of measurements plays a central role, prefers to use the terms bias and variability instead of accuracy and precision: bias is the amount of inaccuracy and variability is the amount of imprecision.

A measurement system can be accurate but not precise, precise but not accurate, neither, or both. For example, if an experiment contains a systematic error, then increasing the sample size generally increases precision but does not improve accuracy. The result would be a consistent yet inaccurate string of results from the flawed experiment. Eliminating the systematic error improves accuracy but does not change precision.

A measurement system is considered valid if it is both accurate and precise. Related terms include bias (non-random or directed effects caused by a factor or factors unrelated to the independent variable) and error (random variability).

The terminology is also applied to indirect measurements—that is, values obtained by a computational procedure from observed data.

In addition to accuracy and precision, measurements may also have a measurement resolution, which is the smallest change in the underlying physical quantity that produces a response in the measurement.

In numerical analysis, accuracy is also the nearness of a calculation to the true value; while precision is the resolution of the representation, typically defined by the number of decimal or binary digits.

In military terms, accuracy refers primarily to the accuracy of fire (justesse de tir), the precision of fire expressed by the closeness of a grouping of shots at and around the centre of the target.[5]

ISO definition (ISO 5725)

edit

A shift in the meaning of these terms appeared with the publication of the ISO 5725 series of standards in 1994, which is also reflected in the 2008 issue of the BIPM International Vocabulary of Metrology (VIM), items 2.13 and 2.14.[3]

According to ISO 5725-1,[1] the general term "accuracy" is used to describe the closeness of a measurement to the true value. When the term is applied to sets of measurements of the same measurand, it involves a component of random error and a component of systematic error. In this case trueness is the closeness of the mean of a set of measurement results to the actual (true) value, that is the systematic error, and precision is the closeness of agreement among a set of results, that is the random error.

ISO 5725-1 and VIM also avoid the use of the term "bias", previously specified in BS 5497-1,[6] because it has different connotations outside the fields of science and engineering, as in medicine and law.

Quantification and applications

edit

In industrial instrumentation, accuracy is the measurement tolerance, or transmission of the instrument and defines the limits of the errors made when the instrument is used in normal operating conditions.[7]

Ideally a measurement device is both accurate and precise, with measurements all close to and tightly clustered around the true value. The accuracy and precision of a measurement process is usually established by repeatedly measuring some traceable reference standard. Such standards are defined in the International System of Units (abbreviated SI from French: Système international d'unités) and maintained by national standards organizations such as the National Institute of Standards and Technology in the United States.

This also applies when measurements are repeated and averaged. In that case, the term standard error is properly applied: the precision of the average is equal to the known standard deviation of the process divided by the square root of the number of measurements averaged. Further, the central limit theorem shows that the probability distribution of the averaged measurements will be closer to a normal distribution than that of individual measurements.

With regard to accuracy we can distinguish:

  • the difference between the mean of the measurements and the reference value, the bias. Establishing and correcting for bias is necessary for calibration.
  • the combined effect of that and precision.

A common convention in science and engineering is to express accuracy and/or precision implicitly by means of significant figures. Where not explicitly stated, the margin of error is understood to be one-half the value of the last significant place. For instance, a recording of 843.6 m, or 843.0 m, or 800.0 m would imply a margin of 0.05 m (the last significant place is the tenths place), while a recording of 843 m would imply a margin of error of 0.5 m (the last significant digits are the units).

A reading of 8,000 m, with trailing zeros and no decimal point, is ambiguous; the trailing zeros may or may not be intended as significant figures. To avoid this ambiguity, the number could be represented in scientific notation: 8.0 × 103 m indicates that the first zero is significant (hence a margin of 50 m) while 8.000 × 103 m indicates that all three zeros are significant, giving a margin of 0.5 m. Similarly, one can use a multiple of the basic measurement unit: 8.0 km is equivalent to 8.0 × 103 m. It indicates a margin of 0.05 km (50 m). However, reliance on this convention can lead to false precision errors when accepting data from sources that do not obey it. For example, a source reporting a number like 153,753 with precision +/- 5,000 looks like it has precision +/- 0.5. Under the convention it would have been rounded to 150,000.

Alternatively, in a scientific context, if it is desired to indicate the margin of error with more precision, one can use a notation such as 7.54398(23) × 10?10 m, meaning a range of between 7.54375 and 7.54421 × 10?10 m.

Precision includes:

  • repeatability — the variation arising when all efforts are made to keep conditions constant by using the same instrument and operator, and repeating during a short time period; and
  • reproducibility — the variation arising using the same measurement process among different instruments and operators, and over longer time periods.

In engineering, precision is often taken as three times Standard Deviation of measurements taken, representing the range that 99.73% of measurements can occur within.[8] For example, an ergonomist measuring the human body can be confident that 99.73% of their extracted measurements fall within ± 0.7 cm - if using the GRYPHON processing system - or ± 13 cm - if using unprocessed data.[9]

In classification

edit

In binary classification

edit

Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined.[10] As such, it compares estimates of pre- and post-test probability. To make the context clear by the semantics, it is often referred to as the "Rand accuracy"[11] or "Rand index".[12][13] It is a parameter of the test. The formula for quantifying binary accuracy is:   where TP = True positive; FP = False positive; TN = True negative; FN = False negative

In this context, the concepts of trueness and precision as defined by ISO 5725-1 are not applicable. One reason is that there is not a single “true value” of a quantity, but rather two possible true values for every case, while accuracy is an average across all cases and therefore takes into account both values. However, the term precision is used in this context to mean a different metric originating from the field of information retrieval (see below).

In multiclass classification

edit

When computing accuracy in multiclass classification, accuracy is simply the fraction of correct classifications:[14][15]   This is usually expressed as a percentage. For example, if a classifier makes ten predictions and nine of them are correct, the accuracy is 90%.

Accuracy is sometimes also viewed as a micro metric, to underline that it tends to be greatly affected by the particular class prevalence in a dataset and the classifier's biases.[14]

Furthermore, it is also called top-1 accuracy to distinguish it from top-5 accuracy, common in convolutional neural network evaluation. To evaluate top-5 accuracy, the classifier must provide relative likelihoods for each class. When these are sorted, a classification is considered correct if the correct classification falls anywhere within the top 5 predictions made by the network. Top-5 accuracy was popularized by the ImageNet challenge. It is usually higher than top-1 accuracy, as any correct predictions in the 2nd through 5th positions will not improve the top-1 score, but do improve the top-5 score.

In psychometrics and psychophysics

edit

In psychometrics and psychophysics, the term accuracy is interchangeably used with validity and constant error. Precision is a synonym for reliability and variable error. The validity of a measurement instrument or psychological test is established through experiment or correlation with behavior. Reliability is established with a variety of statistical techniques, classically through an internal consistency test like Cronbach's alpha to ensure sets of related questions have related responses, and then comparison of those related question between reference and target population.[citation needed]

In logic simulation

edit
 
Comparative waveforms for logic values, circuit voltages, and measure voltages

In logic simulation, a common mistake in evaluation of accurate models is to compare a logic simulation model to a transistor circuit simulation model. This is a comparison of differences in precision, not accuracy. Precision is measured with respect to detail and accuracy is measured with respect to reality.[16][17]

In information systems

edit

Information retrieval systems, such as databases and web search engines, are evaluated by many different metrics, some of which are derived from the confusion matrix, which divides results into true positives (documents correctly retrieved), true negatives (documents correctly not retrieved), false positives (documents incorrectly retrieved), and false negatives (documents incorrectly not retrieved). Commonly used metrics include the notions of precision and recall. In this context, precision is defined as the fraction of documents correctly retrieved compared to the documents retrieved (true positives divided by true positives plus false positives), using a set of ground truth relevant results selected by humans. Recall is defined as the fraction of documents correctly retrieved compared to the relevant documents (true positives divided by true positives plus false negatives). Less commonly, the metric of accuracy is used, is defined as the fraction of documents correctly classified compared to the documents (true positives plus true negatives divided by true positives plus true negatives plus false positives plus false negatives).

None of these metrics take into account the ranking of results. Ranking is very important for web search engines because readers seldom go past the first page of results, and there are too many documents on the web to manually classify all of them as to whether they should be included or excluded from a given search. Adding a cutoff at a particular number of results takes ranking into account to some degree. The measure precision at k, for example, is a measure of precision looking only at the top ten (k=10) search results. More sophisticated metrics, such as discounted cumulative gain, take into account each individual ranking, and are more commonly used where this is important.

In cognitive systems

edit

In cognitive systems, accuracy and precision is used to characterize and measure results of a cognitive process performed by biological or artificial entities where a cognitive process is a transformation of data, information, knowledge, or wisdom to a higher-valued form. (DIKW Pyramid) Sometimes, a cognitive process produces exactly the intended or desired output but sometimes produces output far from the intended or desired. Furthermore, repetitions of a cognitive process do not always produce the same output. Cognitive accuracy (CA) is the propensity of a cognitive process to produce the intended or desired output. Cognitive precision (CP) is the propensity of a cognitive process to produce the same output.[18][19][20] To measure augmented cognition in human/cog ensembles, where one or more humans work collaboratively with one or more cognitive systems (cogs), increases in cognitive accuracy and cognitive precision assist in measuring the degree of cognitive augmentation.

See also

edit

References

edit
  1. ^ a b BS ISO 5725-1: "Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions.", p.1 (1994)
  2. ^ Menditto, Antonio; Patriarca, Marina; Magnusson, Bertil (2025-08-05). "Understanding the meaning of accuracy, trueness and precision". Accreditation and Quality Assurance. 12 (1): 45–47. doi:10.1007/s00769-006-0191-z. ISSN 0949-1775.
  3. ^ a b c JCGM 200:2008 International vocabulary of metrology — Basic and general concepts and associated terms (VIM)
  4. ^ Taylor, John Robert (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. pp. 128–129. ISBN 0-935702-75-X.
  5. ^ North Atlantic Treaty Organization, NATO Standardization Agency AAP-6 – Glossary of terms and definitions, p 43.
  6. ^ BS 5497-1: "Precision of test methods. Guide for the determination of repeatability and reproducibility for a standard test method." (1979)
  7. ^ Creus, Antonio. Instrumentación Industrial[citation needed]
  8. ^ Black, J. Temple (21 July 2020). DeGarmo's materials and processes in manufacturing. John Wiley & Sons. ISBN 978-1-119-72329-5. OCLC 1246529321.
  9. ^ Parker, Christopher J.; Gill, Simeon; Harwood, Adrian; Hayes, Steven G.; Ahmed, Maryam (2025-08-05). "A Method for Increasing 3D Body Scanning's Precision: Gryphon and Consecutive Scanning". Ergonomics. 65 (1): 39–59. doi:10.1080/00140139.2021.1931473. ISSN 0014-0139. PMID 34006206.
  10. ^ Metz, C. E. (October 1978). "Basic principles of ROC analysis" (PDF). Semin Nucl Med. 8 (4): 283–98. doi:10.1016/s0001-2998(78)80014-2. PMID 112681. Archived (PDF) from the original on 2025-08-05.
  11. ^ Powers, David M W. "Common Evaluation Measures from Statistics (ALTS2003: Validation & Evaluation – Evaluation L3)" (PDF). Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  12. ^ Powers, David M. W. (March 2015). "What the F-measure doesn't measure". arXiv:1503.06410. Archived from the original on 2025-08-05.
  13. ^ David M W Powers. "The Problem with Kappa" (PDF). Anthology.aclweb.org. Archived (PDF) from the original on 2025-08-05. Retrieved 11 December 2017.
  14. ^ a b Opitz, Juri (2024). "A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice". Transactions of the Association for Computational Linguistics. 12: 820–836. arXiv:2404.16958. doi:10.1162/tacl_a_00675.
  15. ^ "3.3. Metrics and scoring: quantifying the quality of predictions". scikit-learn. Retrieved 17 May 2022.
  16. ^ Acken, John M. (1997). "none". Encyclopedia of Computer Science and Technology. 36: 281–306.
  17. ^ Glasser, Mark; Mathews, Rob; Acken, John M. (June 1990). "1990 Workshop on Logic-Level Modelling for ASICS". SIGDA Newsletter. 20 (1).
  18. ^ Fulbright, Ron (2020). Democratization of Expertise: How Cognitive Systems Will Revolutionize Your Life (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-0367859459.
  19. ^ Fulbright, Ron (2019). "Calculating Cognitive Augmentation – A Case Study". Augmented Cognition. Lecture Notes in Computer Science. Vol. 11580. Springer Cham. pp. 533–545. arXiv:2211.06479. doi:10.1007/978-3-030-22419-6_38. ISBN 978-3-030-22418-9. S2CID 195891648.
  20. ^ Fulbright, Ron (2018). "On Measuring Cognition and Cognitive Augmentation". Human Interface and the Management of Information. Information in Applications and Services. Lecture Notes in Computer Science. Vol. 10905. Springer Cham. pp. 494–507. arXiv:2211.06477. doi:10.1007/978-3-319-92046-7_41. ISBN 978-3-319-92045-0. S2CID 51603737.
edit
英国为什么要脱欧 什么不可当 甲钴胺有什么作用 甲亢吃什么药 知了喜欢吃什么
伤口换药挂什么科啊 右侧卵巢内囊性结构什么意思 口苦口干是什么原因引起的 父母是o型血孩子是什么血型 土耳其浴是什么意思
三伏天是什么时候 舌中间有裂纹是什么原因 牙齿吃甜的就会疼什么原因 丑角是什么意思 上呼吸道感染吃什么药
副县长是什么级别 脑白质变性是什么意思 吃素是什么意思 hw是什么牌子 给医生送锦旗写什么
左侧肋骨下面是什么器官hcv8jop0ns7r.cn 七十岁是什么之年0735v.com 宫缩是什么原因引起的hcv9jop2ns2r.cn 全国政协常委什么级别yanzhenzixun.com 飞蛾吃什么hcv8jop8ns8r.cn
gg是什么意思xianpinbao.com 味精的主要成分是什么hcv9jop1ns6r.cn 鹿茸是什么hcv9jop3ns0r.cn 淋巴结节什么症状xinjiangjialails.com 猫咪掉胡子是什么原因hcv9jop4ns3r.cn
藏红花泡水喝有什么功效hcv9jop4ns3r.cn 猫咪打呼噜代表什么hcv9jop3ns5r.cn 变性乙醇是什么东西hcv9jop3ns2r.cn 米肠是什么做的hcv9jop1ns3r.cn 咳嗽有痰吃什么好的快bfb118.com
梅子色是什么颜色hcv9jop6ns6r.cn 慧五行属什么hcv9jop5ns7r.cn 非萎缩性胃炎吃什么药效果好hcv9jop3ns0r.cn 萤火虫为什么会发光简单回答hcv9jop6ns3r.cn 吃什么东西增强免疫力hcv8jop0ns9r.cn
百度